

Electromechanical cylinders

User manual for electromechanical cylinders

Almost zero environmental impact

Swedrive's electromechanical cylinders offer an excellent alternative to pneumatic and hydraulic cylinders for creating linear motion.

Electromechanical cylinders are taking over the market

Our unique range of cylinders is the result of many years of experience in developing gear drives and mechanical jacks.

Today, our cylinders can be found in the defence industry, pulp and paper industry, materials handling, shipbuilding, medical applications, and other areas where total reliability in harsh environments is a key requirement.

Their low environmental impact alone supports the choice to switch from traditional pneumatic and hydraulic systems. But there are many other arguments in their favour:

© Copyright Swedrive AB 2022 This information may only be reproduced – in part or in whole – with the consent of Swedrive. Swedrive reserves the right to change specifications and other data in this catalogue without prior notice. Catalogue issue 22-10

- Minimal environmental impact; ideal in locations where avioding oil spills is of high priority
- Low noise level
- Energy is only used during motion
- Minimal rebound, easy to secure against unwanted movement during static loading
- Precise positioning and repeatability
- Easy to control desired stroke length and actuation time
- Speed is independent of load and direction of force
- Fast and easy installation
- Ability to operate multiple cylinders in parallel with the aid of mechanically or electrically operated shafts
- Fully enclosed design enables use in a variety of difficult environments
- Minimal servicing requirements

- 1 Worm gear drive
- 2 Spherical bearing
- 3 Grease nipple
- 4 Bleed nipple
- 5 Travelling nut
- 6 Trapezoidal spindle
- 7 Cylinder tube
- B Piston
- 9 Seal
- 10 Wiper

General information:

Because our electromechanical cylinders are intended as an alternative to hydraulic cylinders we want to point out an important difference in order to avoid problems and failures.

Our cylinders must NOT be driven against fixed or uncontrolled stops, as these units generate significantly higher forces in such a situation than the nominal forces given in this catalogue. If more precise positioning is required we recommend that the unit is driven by an inverter to be able to adjust and lower the speed to avoid uncontrolled extention. Electromechanical cylinders as a whole cannot tolerate transverse forces.

For information on installation and maintenance, see the operating instructions on our website **www.swedrive.com** under Documents, Electromechanical cylinders.

Standard configurations from catalogue

- Trapezoidal spindle
- Spherical bearings on all sizes except MCT20
- Steel cylinder tube except for MCT20 and MCT40, which instead use an aluminium extrusion
- Piston treated with Corr-I-Dur
- Grease nipple on MCT75–MCT250; grease port on MCT20 and MCT40
- Surface treatment: Swedrive paint system MS001, RAL 9016 (White), aluminium extrusion on MCT20 and MCT40 is anodized and requires no further surface treatment

- Not rotation locked
- Designed for ambient temperature range -20°C/+40°C
- Fan-cooled IP55 class 3-phase motor for 230/400 V +/-10%, 50 Hz up to 3 kW, and 400/690 V +/-10%, 50 Hz from 4 kW upwards.
- All sizes are CE marked in compliance with EU Machinery Directive 2006/42/EC
- The data given in this catalogue are guideline values and based on operation in an industrial environment and at an ambient temperature of 20°C

Non-standard configurations

In addition to standard configurations we can offer custom features such as:

Surface treatment:

- Various surface treatments, for example to meet corrosion classes C4 and C5
- Custom colours

Environment:

- Cylinders for ATEX or corrosive environments, see info on page 16
- Ambient temperatures outside the range -20°C/+40°C

Special adaptations:

- Custom cylinders with alternative gear ratios and/ or ball/roller spindles to meet requirements for power, speed and ED beyond those specified in the catalogue
- Custom eyes/mountings
- Double-ended drive shaft

- Complete assemblies comprising multiple cylinders with transfer shafts and bevel gears, see example on page 16
- Rotation lock for MCT20 och MCT40

Motors:

- Alternative voltages and frequencies
- Higher protection class
- Specific efficiency classes
- Standby heater
- Thermistors
- Brake
- Encoder
- Tropical insulation
- · Specific approvals, such as UL
- DC motors
- EX specification

Our electromechanical cylinders are available in 5 standard sizes and together cover a range of forces \leq 250 kN and speeds \leq 6000 mm/min.

Storlek	MCT 20	MCT 40	MCT 75	MCT 150	MCT 250
Last (kN)	≤20	≤40	≤75	≤150	≤250
Motor (kW)	0,55-1,1	1,1-1,5	1,1-4,0	2,2-7,5	5,5-15,0

Chart indicating which cylinder size is likely to be suitable for a required load and speed.

Options

Limit sensor

To enable accurate positioning, cylinders can be equipped with T-slot cylinder sensors.

MCT20-MCT40: Sensors are mounted in the slot of the cylinder.

MCT75-MCT250: These must be fitted with an external sensor cylinder with a slot in which the sensors can be mounted. NOTE! This must be specified at the time of ordering; it cannot be retrofitted!

The following sensors are available as standard in PNP specification for a supply voltage of 10–30 VDC; (supply class 2 according to cULus).

MK5101

Output type:Normally openConnection:Cable 0.3 m, male connector
1 x M8, snap screw

MK5119

Output type:Normally closedConnection:Cable 0.3 m, male connector
1 x M8, snap screw

MK5110

Output type: Connection: Normally open Cable 2 m, 3 x 0.14 mm²

MK5118

Output type: Connection: Normally closed Cable 2 m, 3 x 0.14 mm²

MK5101 and MK5119 can be combined with connecting cables of various lengths.

Electromechanical cylinder MCT20 Up to 20kN, Stroke 100–1000mm, Speed 636–4380mm/min

Motor dimensions (mm)

Motor	A (standard)	A (brake motor)	D
80A	320	385	Ø160
80B	320	385	Ø160
80C	320	385	Ø160

ELECTROMECHANICAL CYLINDER MCT20 TR30x6

rpm	Motor/Power	Gear ratio:	7,67:1	11,5:1	23:1	30:1
	000 4	Last (kN)	10	14		
	80B-4	V (mm/min)	1100	730		
00	U,7 5K VV	ED(%)	11	11		
14	000.4	Last (kN)	15	22		
	800-4	V (mm/min)	1100	730		
	T,TKW	ED(%)	7	8		
	004.0	Last (kN)	4,8	7	12	16
	80A-2	V (mm/min)	2200	1460	730	636
00	U,75KVV	ED(%)	11	11	13	14
28	000.0	Last (kN)	7,5	11	19	
	80B-2	V (mm/min)	2200	1460	730	
	1,1kW	ED(%)	7	8	9	

MAX. COMPRESSIVE FORCE TO AVOID BUCKLING

For compressive loads or horizontal mounting with a stroke of over 400 mm the overall length increases according to the following formula: C = 0.25xSL-98 where SL = Stroke

ELECTROMECHANICAL CYLINDER MCT20 TR30x12

rpm	Motor/Power	Gear ratio:	7,67:1	11,5:1	23:1	30:1
		Last (kN)	7,5	10	19	
	80B-4	V (mm/min)	2190	1460	730	
00	0,75kW	ED(%)	14	15	17	
14	000.4	Last (kN)	11	16		
-	800-4	V (mm/min)	2190	1460		
	1,1KVV	ED(%)	10	10		
	004.0	Last (kN)	3,5	5,1	9,3	11
	80A-2	V (mm/min)	4380	2920	1460	1120
00	U,75KVV	ED(%)	14	15	17	19
28	90P 2	Last (kN)	5,5	8	14	18
	00D-2	V (mm/min)	4380	2920	1460	1120
	1,1KVV	ED(%)	10	10	12	13

Electromechanical cylinder MCT40 Up to 40kN, Stroke 100–1000mm, Speed 246–5340mm/min

Motor dimensions (mm)

Motor	A(standard)	A(brake motor)	D
90A	355	400	180
90B	380	425	180

ELECTROMECHANICAL CYLINDER MCT40 TR40x7

rpm	Motor/Power	Gear ratio:	7,33:1	15,5:1	21:1	31:1	40:1
		Last (kN)	11	23	29	40	40
	90A-4	V (mm/min)	1338	630	468	318	246
00	1,1 kW	ED(%)	9	10	11	13	12
14	005.4	Last (kN)	14	32	40		
	90B-4	V (mm/min)	1338	630	468		
	1,5 KW	ED(%)	7	7	8		
0	004.0	Last (kN)	7,5	16	20	28	36
280	90A-2	V (mm/min)	2670	1260	936	636	492
	1,5 kW	ED(%)	7	7	8	9	9

ELECTROMECHANICAL CYLINDER MCT40 TR40x14

rpm	Motor/Power	Gear ratio:	7,33	15,5:1	21:1	31:1	40:1
	004.4	Last (kN)	2,5	5,0	6,4	9,0	11
	90A-4	V (mm/min)	2670	1260	936	636	492
00	1,1 KVV	ED(%)	18	19	21	26	25
14	005.4	Last (kN)	3,5	7,3	9,4	13	16
	90B-4	V (mm/min)	2670	1260	936	636	492
	1,5 kW	ED(%)	13	14	16	19	18
2800	004.4	Last (kN)	5,5	11	14	20	25
	90A-4	V (mm/min)	2670	1260	936	636	492
	1,1 KVV	ED(%)	9	10	11	13	12

Electromechanical cylinder MCT75 Up to 75kN, Stroke 100–2300mm, Speed 249–4800mm/min

Motor dimensions (mm)

Motor	A(standard)	A(brake motor)	D
90A	370	470	Ø180
100A	425	480	Ø200
100B	425	500	Ø200
112A	450	510	Ø224

ELECTROMECHANICAL CYLINDER MCT75 TR50x8

rpm	Motor/Power	Gear ratio:	9,33:1	23:1	28:1	35:1	45:1
	004-4*	Last (kN)	11	24	29	34	46
	90A-4	V (mm/min)	1200	487	400	320	249
	1,1KVV	ED(%)	19	22	22	23	24
	1004.4	Last (kN)	24	48	60	73	75
	100A-4	V (mm/min)	1200	487	400	320	249
00	Z,ZKVV	ED(%)	9	11	11	12	12
4	1000 4	Last (kN)	33	70	75	75	
<u> </u>	100B-4	V (mm/min)	1200	487	400	320	
	3,0KW	ED(%)	7	8	8	9	
	112A-4 4,0kW	Last (kN)	45	75			
		V (mm/min)	1200	487			
		ED(%)	5	6			
	000 2*	Last (kN)	12	24	31	37	46
	90B-2^	V (mm/min)	2400	974	800	640	498
	Z,ZKVV	ED(%)	9	11	11	12	12
0	1000.0	Last (kN)	16	36	43	52	64
80	100B-2	V (mm/min)	2400	974	800	640	498
58	3,0KW	ED(%)	7	8	8	9	9
	1104.0	Last (kN)	22	49	58	71	75
	112A-2	V (mm/min)	2400	974	800	640	498
	4,0KW	ED(%)	5	6	6	6	7

ED = max. run time per hour

* = Terminal cover rotated

MAX. COMPRESSIVE FORCE TO AVOID BUCKLING

For compressive loads or horizontal mounting with a stroke of over 520 mm the overall length increases according to the following formula: C = 0.25xSL-130 where SL = Stroke

ELECTROMECHANICAL CYLINDER MCT75 TR50x16

rpm	Motor/Power	Gear ratio:	9,33:1	23:1	28:1	35:1	45:1
	0.04 44	Last (kN)	9,0	18	22	26	32
	90A-4*	V (mm/min)	2400	974	800	640	498
	1,1KW	ED(%)	24	27	28	30	31
	1004.4	Last (kN)	17	39	46	56	60
	100A-4	V (mm/min)	2400	974	800	640	498
00	2,2KW	ED(%)	12	14	14	15	15
4	1000 4	Last (kN)	25	54	60	60	
~~~	100B-4	V (mm/min)	2400	974	800	640	
	3,0kW	ED(%)	9	10	10	11	
	112A-4 4,0kW	Last (kN)	34	60			
		V (mm/min)	2400	974			
		ED(%)	7	8			
	000.0	Last (kN)	9,2	20	23	28	35
	90B-2	V (mm/min)	4800	1948	1600	1280	996
	2,2KW	ED(%)	12	14	14	15	15
0	1000.0	Last (kN)	12	28	33	40	49
80	100B-2	V (mm/min)	4800	1948	1600	1280	996
5	3,0KW	ED(%)	9	10	10	11	11
	1124.2	Last (kN)	17	37	45	54	60
	112A-2	V (mm/min)	4800	1948	1600	1280	996
	4,0kW	ED(%)	7	8	8	8	9

ED = max. run time per hour

* = Terminal cover rotated

## Electromechanical cylinder MCT150 Up to 150kN, Stroke 100–2300mm, Speed 228–4584mm/min





Motor dimensions (mm)

Motor	A(standard)	A(brake motor)	D
100A	465	520	Ø200
112A	490	550	Ø224
132A	525	625	Ø264
132B	565	650	Ø264

#### ELECTROMECHANICAL CYLINDER MCT150 TR60x9

rpm	Motor/Power	Gear ratio:	11:1	19:1	22,5:1	38:1	55:1
	1004.4	Last (kN)	24	40	47	71	96
	100A-4	V (mm/min)	1146	666	558	330	228
	Z,ZKVV	ED(%)	27	29	29	33	36
		Last (kN)	45	74	86	131	150
	112A-4	V (mm/min)	1146	666	558	330	228
00	4,0kW	ED(%)	15	16	16	18	20
4	1004.4	Last (kN)	63	104	121	150	
	132A-4	V (mm/min)	1146	666	558	330	
	5,5kW	ED(%)	11	12	12	13	
	132B-4 7,5kW	Last (kN)	81	142	150		
		V (mm/min)	1146	666	558		
		ED(%)	8	9	9		
	1104.0	Last (kN)	22	37	44	68	93
	112A-2	V (mm/min)	2292	1332	1116	660	456
	4,0KW	ED(%)	15	16	16	18	20
0	1004.0	Last (kN)	31	52	61	95	131
80	I3ZA-Z	V (mm/min)	2292	1332	1116	660	456
5	5,5KVV	ED(%)	11	12	12	13	14
	132B-2	Last (kN)	43	72	85	131	150
	7.5kW	V (mm/min)	2292	1332	1116	660	456
	7,3KW	ED(%)	8	9	9	10	10



### MAX. COMPRESSIVE FORCE TO AVOID BUCKLING



For compressive loads or horizontal mounting with a stroke of over 520 mm the overall length increases according to the following formula: C = 0.25xSL-130 where SL = Stroke

rpm	Motor/Power	Gear ratio:	11:1	19:1	22,5:1	38:1	55:1
1400	100A-4 2,2kW	Last (kN)	19	31	36	55	74
		V (mm/min)	2292	1332	1116	660	456
		ED(%)	34	37	37	42	45
	112A-4 4,0kW	Last (kN)	35	58	68	103	120
		V (mm/min)	2292	1332	1116	660	456
		ED(%)	19	20	20	23	25
	1004.4	Last (kN)	49	80	94	120	
	132A-4	V (mm/min)	2292	1332	1116	660	
	5,5KW	ED(%)	14	15	15	17	
	1005.4	Last (kN)	67	110	120		
	7,5kW	V (mm/min)	2292	1332	1116		
		ED(%)	10	11	11		
2800	112A-2 4,0kW	Last (kN)	17	29	34	53	73
		V (mm/min)	4584	2664	2232	1320	912
		ED(%)	19	20	20	23	25
	132A-2 5,5kW	Last (kN)	24	41	48	74	101
		V (mm/min)	4584	2664	2232	1320	912
		ED(%)	14	15	15	17	18
	132B-2 7,5kW	Last (kN)	34	56	66	102	120
		V (mm/min)	4584	2664	2232	1320	912
		ED(%)	10	11	11	12	13

ELECTROMECHANICAL CYLINDER MCT150 TR60x18

## Electromechanical cylinder MCT250 Up to 250kN, Stroke 100–2300mm, Speed 241–6054mm/min





Motor dimensions (mm)

Motor	A(standard)	A(brake motor)	D
132A	530	585	Ø264
132B	570	650	Ø264
160A	675	770	Ø320
160B	720	770	Ø320

#### ELECTROMECHANICAL CYLINDER MCT250 TR80x10

rpm	Motor/Power	Gear ratio:	9,25:1	24,5:1	29:1	49:1	58:1
1400	132A-4 5,5kW	Last (kN)	42	104	121	184	212
		V (mm/min)	1514	571	483	286	241
		ED(%)	23	25	25	28	29
	132B-4 7,5kW	Last (kN)	58	142	166	250	250
		V (mm/min)	1514	571	483	286	241
		ED(%)	17	18	18	21	21
	160A-4 11,0kW	Last (kN)	86	210	245		
		V (mm/min)	1514	571	483		
		ED(%)	11	12	12		
	160B-4 15,0kW	Last (kN)	117	250	250		
		V (mm/min)	1514	571	483		
		ED(%)	8	9	9		
	132A-2 5,5kW	Last (kN)	21	52	61	95	110
		V (mm/min)	3028	1143	966	571	483
		ED(%)	23	25	25	28	29
	132B-2 7,5kW	Last (kN)	29	72	85	131	152
2800		V (mm/min)	3028	1143	966	571	483
		ED(%)	17	18	18	21	21
	160A-2 11,0kW	Last (kN)	43	107	126	195	226
		V (mm/min)	3028	1143	966	571	483
		ED(%)	11	12	12	14	15
	160B-2 15,0kW	Last (kN)	59	148	173	250	250
		V (mm/min)	3028	1143	966	571	483
		ED(%)	8	9	9	10	11



#### MAX. COMPRESSIVE FORCE TO AVOID BUCKLING



For compressive loads or horizontal mounting with a stroke of over 688 mm the overall length increases according to the following formula: C = 0.25xSL-172 where SL = Stroke

#### 9,25:1 24,5:1 29:1 49:1 58:1 rpm Motor/Power Gear ratio: Last (kN) 132A-4 V (mm/min) 5,5kW ED(%) Last (kN) 132B-4 V (mm/min) 7,5kW ED(%) Last (kN) 160A-4 V (mm/min) 11.0kW ED(%) Last (kN) 160B-4 V (mm/min) 15,0kW ED(%) Last (kN) 132A-2 V (mm/min) 5,5kW ED(%) Last (kN) 132B-2 V (mm/min) 7,5kW ED(%) Last (kN) 160A-2 V (mm/min) 11,0kW ED(%) Last (kN) 160B-2 V (mm/min) 15,0kW ED(%)

#### ELECTROMECHANICAL CYLINDER MCT250 TR80x20

## Electromechanical cylinders for harch enviroments

### ATEX

Electrical and mechanical equipment for use in an explosive environment in Europe must comply with ATEX Directive 2014/34/EU. This directive applies to equipment and protection systems intended for use in potentially explosive atmospheres, components intended for use in such products, and safety and regulatory devices intended for use outside such risk areas but which are essential for or contribute to the safety of EX products in the risk area.

We can offer ATEX-rated cylinders on request for various zones and levels.

### Corrosive environments

For use in corrosive environments in which our standard cylinders are unsuitable, we offer our range of WE cylinders. Our WE cylinders have stainless steel pistons and spherical bearings, and other components are carefully selected to withstand corrosive environments. These units are given surface treatments that meet the customer's specific corrosion class requirements or the customer's own specifications.

Contact us for more information about these cylinders.



### Configuration example



Two MCT40 units driven by a single motor. Contact us for more information about possible configurations.

### Please provide the following information if you have an enquiry or wish to place an order for a standard cylinder from the catalogue:

Cylinder size:	e.g. MCT75 TR50x8
Direction of force:	Push/Pull
Gear ratio and Motor size:	e.g. 23:1 and 112A-4 4.0 kW
or	
Load (kN) and Speed (mm/min):	e.g. 75 kN and 487 mm/min
Stroke (mm):	NOTE! For push applications, remember to check
	buckling strength
Installation orientation:	Vertical/Horizontal (+/-45° from horizontal plane)
With or without limit sensor:	Yes/No
If limit sensor is required, which	
type and how many:	e.g. MK5101, 2 pcs
The standard cylinder configuration is as follows:	
Mater partition	<b>Dialet (</b> an an <b>f</b> arma <b>b</b> allow) and aft (a strandischola ta b

Motor position	<b>Right (seen from below</b> ) or left (not applicable to MCT20)
Location of grease nipple/grease port	Facing motor or rotated through 90° intervals
Terminal cover location	Facing top eye or rotated through 90° intervals
Eye orientation	Parallel with motor flange or rotated through 90°

For non-standard requirements and configurations please specify these separately. The Configurator on our website **www.swedrive.com** lets you build and download a model of your desired cylinder.



Swedrive AB manufactures high-quality electromechanical cylinders, worm gear drives, screw jacks and custom solutions for industry. Swedrive is part of Dacke Industri AB. Swedrive AB manufactures high-quality

### www.swedrive.com

Use the QR code or visit our website to learn more about the company and to download our catalogues of standard products.



### Based in Scandinavia

- built for the global market

### About Swedrive

Swedrive is one of Scandinavia's leading manufacturers of high-quality worm gear drives, screw jacks, electromechanical cylinders and custom solutions for industry.

### Quality, speed and flexibility

The hallmark of all our products is their high quality combined with our company's active technical development, which enables us to offer customers energy-efficient, cost-optimized products. Our modular base range and flexible production system also allow us to quickly configure and customize products to suit individual requirements. As a result we always deliver the best solution.

### Close collaboration lowers total costs

By combining our experience in designing and manufacturing gear drives with the customer's know-how we can create a product that is optimized for its purpose, and thus build long-term partnerships. This also ensures that the total cost of your solution is significantly lower than if you simply choose standard components. This means that you get a product that is optimized for technical performance, energy efficiency, overall dimensions, ease of service and environmental requirements.



### Segments



Medtech



General industry



Lifts & Cranes



Marine



Pulp & Paper



Food & Beverage



Defence



### SWEDRIVE AB

Box 4 341 02 Lagan

Besöksadress: Prästtorpsvägen 14 341 51 Lagan Tel: +46 (0)372-265 00 sales@swedrive.se www.swedrive.com